大家好,小金来为大家解答以上的问题。正比例函数的图像和性质分别是什么,正比例函数的图像和性质这个很多人还不知道,现在让我们一起来看看吧!
1、图像:性质:单调性当k>0时,图像经过第一、三象限,从左往右上升,y随x的增大而增大(单调递增),为增函数;当k<0时,图像经过第二、四象限,从左往右下降,y随x的增大而减小(单调递减),为减函数。
2、2、对称性对称点:关于原点成中心对称。
3、对称轴:自身所在直线;自身所在直线的垂直平分线。
4、扩展资料正比例函数的注意事项:在判断两种相关联的量是否成正比例时,应注意这两种相关联的量,虽然也是一种量随着另一种的变化而变化,但它们相对应的两个数的比值不一定,那它们就不能成正比例。
5、例如:一个人的年龄和它的体重,就不能成正比例关系,正方形的边长和它的面积也不成正比例关系。
6、 而单价数量与总价是成正比的(单价不变,总价随着数量的增减而增减)。
7、在两个一次函数表达式中:当两个一次函数表达式中的k相同,b也相同时,则这两个一次函数的图像重合;2、当两个一次函数表达式中的k相同,b不相同时,则这两个一次函数的图像平行;3、当两个一次函数表达式中的k不相同,b不相同时,则这两个一次函数的图像相交;4、当两个一次函数表达式中的k不相同,b相同时,则这两个一次函数图像交于y轴上的同一点(0,b);5、当两个一次函数表达式中的k互为负倒数时,则这两个一次函数图像互相垂直。
8、参考资料来源:百度百科-正比例函数一、性质单调性当k>0时,图像经过第一、三象限,从左往右上升,y随x的增大而增大(单调递增),为增函数; 当k<0时,图像经过第二、四象限,从左往右下降,y随x的增大而减小(单调递减),为减函数。
9、2、对称性对称点:关于原点成中心对称。
10、对称轴:自身所在直线;自身所在直线的垂直平分线。
11、3、解析式:y=kx(k是常数,k≠0)。
12、4、必过点:(0,0)、(1,k)。
13、5、倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴。
14、二、图像如下扩展资料一、正比例函数与一次函数之间的关系一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移)二、图像描述正比例函数y=kx(k≠0),当k的绝对值越大,直线越“陡”;当k的绝对值越小,直线越“平”。
15、已知一点坐标,用待定系数法求函数解析式。
16、先设解析式为y=kx,再代入已知点坐标,解出k的值。
17、2、解出k的值后,在数轴上标出各点并连接个点。
18、参考资料来源:百度百科-正比例函数正比例函数的性质 1.定义域:R(实数集)2.值域:R(实数集) 3.奇偶性:奇函数 4.单调性:当k>0时,图像位于第一、三象限,y随x的增大而增大(单调递增);当k<0时,图像位于第二、四象限,y随x的增大而减小(单调递减)。
19、 5.周期性:不是周期函数。
20、 6.对称轴:直线,无对称轴。
21、、正比例函数的图像 正比例函数的图像是经过坐标原点(0,0)和定点(x,kx)两点的一条直线,它的斜率是k,横、纵截距都为0。
22、正比例函数图像的作法 1.在x允许的范围内取一个值,根据解析式求出y值 2.根据第一步求的x、y的值描出点 3.做过第二步描出的点和原点的直线正比例函数的性质 1.定义域:R(实数集)2.值域:R(实数集) 3.奇偶性:奇函数 4.单调性:当k>0时,图像位于第一、三象限,y随x的增大而增大(单调递增);当k<0时,图像位于第二、四象限,y随x的增大而减小(单调递减)。
23、 5.周期性:不是周期函数。
24、 6.对称轴:直线,无对称轴。
25、、正比例函数的图像 正比例函数的图像是经过坐标原点(0,0)和定点(x,kx)两点的一条直线,它的斜率是k,横、纵截距都为0。
26、正比例函数图像的作法 1.在x允许的范围内取一个值,根据解析式求出y值 2.根据第一步求的x、y的值描出点 3.做过第二步描出的点和原点的直线呵呵正比例函数的性质 1.定义域:R(实数集)2.值域:R(实数集) 3.奇偶性:奇函数 4.单调性:当k>0时,图像位于第一、三象限,y随x的增大而增大(单调递增);当k<0时,图像位于第二、四象限,y随x的增大而减小(单调递减)。
27、 5.周期性:不是周期函数。
28、 6.对称轴:直线,无对称轴。
29、、正比例函数的图像 正比例函数的图像是经过坐标原点(0,0)和定点(x,kx)两点的一条直线,它的斜率是k,横、纵截距都为0。
30、正比例函数图像的作法 1.在x允许的范围内取一个值,根据解析式求出y值 2.根据第一步求的x、y的值描出点 3.做过第二步描出的点和原点的直线。
本文到此分享完毕,希望对大家有所帮助。